Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Rev. Soc. Bras. Med. Trop ; 53: e20190470, 2020. tab, graf
Article in English | SES-SP, ColecionaSUS, LILACS | ID: biblio-1136864

ABSTRACT

Abstract INTRODUCTION: Tuberculosis is listed among the top 10 causes of deaths worldwide. The resistant strains causing this disease have been considered to be responsible for public health emergencies and health security threats. As stated by the World Health Organization (WHO), around 558,000 different cases coupled with resistance to rifampicin (the most operative first-line drug) have been estimated to date. Therefore, in order to detect the resistant strains using the genomes of Mycobacterium tuberculosis (MTB), we propose a new methodology for the analysis of genomic similarities that associate the different levels of decomposition of the genome (discrete non-decimated wavelet transform) and the Hurst exponent. METHODS: The signals corresponding to the ten analyzed sequences were obtained by assessing GC content, and then these signals were decomposed using the discrete non-decimated wavelet transform along with the Daubechies wavelet with four null moments at five levels of decomposition. The Hurst exponent was calculated at each decomposition level using five different methods. The cluster analysis was performed using the results obtained for the Hurst exponent. RESULTS: The aggregated variance, differenced aggregated variance, and aggregated absolute value methods presented the formation of three groups, whereas the Peng and R/S methods presented the formation of two groups. The aggregated variance method exhibited the best results with respect to the group formation between similar strains. CONCLUSION: The evaluation of Hurst exponent associated with discrete non-decimated wavelet transform can be used as a measure of similarity between genome sequences, thus leading to a refinement in the analysis.


Subject(s)
Humans , Genome, Bacterial/genetics , Wavelet Analysis , Models, Genetic , Mycobacterium tuberculosis/genetics
2.
An. Facultad Med. (Univ. Repúb. Urug., En línea) ; 5(2): 12-28, dic. 2018. tab, graf
Article in Spanish | LILACS, BNUY, UY-BNMED | ID: biblio-1088677

ABSTRACT

El genoma humano, como el de todos los mamíferos y aves, es un mosaico de isocoros, los que son regiones muy largas de ADN (>>100 kb) que son homogéneas en cuanto a su composición de bases. Los isocoros pueden ser divididos en un pequeño número de familias que cubren un amplio rango de niveles de GC (GC es la relación molar de guanina+citosina en el ADN). En el genoma humano encontramos cinco familias, que (yendo de valores bajos a altos de GC) son L1, L2, H1, H2 y H3. Este tipo de organización tiene importantes consecuencias funcionales, tales como la diferente concentración de genes, su regulación, niveles de transcripción, tasas de recombinación, tiempo de replicación, etc. Además, la existencia de los isocoros lleva a las llamadas "correlaciones composicionales", lo que significa que en la medida en que diferentes secuencias están localizadas en diferentes isocoros, todas sus regiones (exones y sus tres posiciones de los codones, intrones, etc.) cambian su contenido en GC, y como consecuencia, cambian tanto el uso de aminoácidos como de codones sinónimos en cada familia de isocoros. Finalmente, discutimos el origen de estas estructuras en un marco evolutivo.


The human genome, as the genome of all mammals and birds, are mosaic of isochores, which are very long streches (>> 100 kb) of DNA that are homogeneous in base composition. Isochores can be divided in a small number of families that cover a broad range of GC levels (GC is the molar ratio of guanine+cytosine in DNA). In the human genome, we find five families, which are (going from GC- poor to GC- rich) L1, L2, H1, H2 and H3. This organization has important consequences, as is the case of the concentration of genes, their regulation, transcription levels, rate of recombination, time of replication, etc. Furthermore, the existence of isochores has as a consequence the so called "compositional correlations", which means that as long as sequences are placed in different families of isochores, all of their regions (exons and their three codon positions, introns, etc.) change their GC content, and as a consequence, both codon and amino acids usage change in each isochore family. Finally, we discuss the origin of isochores within an evolutioary framework.


O genoma humano, como todos os mamíferos e aves, é um mosaico de isocóricas, que são muito longas regiões de ADN (>> 100 kb) que são homogéneos na sua composição de base. Isóquos podem ser divididos em um pequeno número de famílias que cobrem uma ampla gama de níveis de GC (GC é a razão molar de guanina + citosina no DNA). No genoma humano, encontramos cinco famílias, que (variando de valores baixos a altos de GC) são L1, L2, H1, H2 e H3. Este tipo de organização tem importantes conseqüências funcionais, como a diferente concentração de genes, sua regulação, níveis de transcrição, taxas de recombinação, tempo de replicação, etc. Além disso, a existência de isocóricas portada chamado "correlações de composição", o que significa que, na medida em que diferentes sequências estão localizados em diferentes isocóricas, todas as regiões (exs e três posições de codões, intrs, etc.) mudam seu conteúdo em GC e, como consequência, alteram tanto o uso de aminoácidos quanto de códons sinônimos em cada família de isócoros. Finalmente, discutimos a origem dessas estruturas em uma estrutura evolucionária.


Subject(s)
Humans , Genome, Human/genetics , Isochores/genetics , Base Composition , Introns/genetics
3.
Genomics & Informatics ; : 38-47, 2017.
Article in English | WPRIM | ID: wpr-69980

ABSTRACT

Research into new methods for identifying highly expressed genes in anonymous genome sequences has been going on for more than 15 years. We presented here an alternative approach based on modified score of relative codon usage bias to identify highly expressed genes in crenarchaeal genomes. The proposed algorithm relies exclusively on sequence features for identifying the highly expressed genes. In this study, a comparative analysis of predicted highly expressed genes in five crenarchaeal genomes was performed using the score of Modified Relative Codon Bias Strength (MRCBS) as a numerical estimator of gene expression level. We found a systematic strong correlation between Codon Adaptation Index and MRCBS. Additionally, MRCBS correlated well with other expression measures. Our study indicates that MRCBS can consistently capture the highly expressed genes.


Subject(s)
Anonyms and Pseudonyms , Archaea , Base Composition , Bias , Codon , Gene Expression , Genome
4.
Mem. Inst. Oswaldo Cruz ; 111(9): 594-596, Sept. 2016. graf
Article in English | LILACS | ID: lil-794725

ABSTRACT

We characterised and reported the first full-length genomes of Human T-cell Lymphotropic Virus Type 1 subgroup HTLV-1aD (CV21 and CV79). This subgroup is one of the major determinants of HTLV-1 infections in North and West Africa, and recombinant strains involving this subgroup have been recently demonstrated. The CV21 and CV79 strains from Cape Verde/Africa were characterised as pure HTLV-1aD genomes, comparative analyses including HTLV-1 subtypes and subgroups revealed HTLV-1aD signatures in the envelope, pol, and pX regions. These genomes provide original information that will contribute to further studies on HTLV-1a epidemiology and evolution.


Subject(s)
Humans , Genome-Wide Association Study , Human T-lymphotropic virus 1/genetics , Cabo Verde , Phylogeny
5.
Chinese Traditional and Herbal Drugs ; (24): 598-603, 2013.
Article in Chinese | WPRIM | ID: wpr-855473

ABSTRACT

Objective: To analyze the codon usage of functional genes in Eleutherococcus senticosus and their influencing factors. Methods: The multivariate statistical analysis and correspondence analysis were carried out using CodonW and SPSS software with codon of 17 genes selected from the functional genes of E. senticosus. Results: GC contents at the three positions of functional gene codons in E. senticosus was 51.03%, 41.23%, and 40.04%, all of which had a significant correlation coefficient (P < 0.05). The correlation coefficients with GC12 and GC3 were 0.262, and both were insignificant. The relative synonymous codon usage of 27 codons was greater than 1, among which 22 codons ended with A or T base. In the corresponding analysis, the first axis showed the variation of 22.78%, and there were significant correlation coefficients in codon adaptation, codon bias index, and GC3 (P < 0.01). The correlation coefficients were 0.686, 0.617, and 0.786, respectively, but they were insignificantly related with the effective number of codons (ENC). The second axis showed the variation of 19.28% and it was only significantly related with ENC (r = 0.635). Seventeen optimized codons in functional genes of E. senticosus were defined. Conclusion: All codons of functional genes in E. senticosus prefer to ending with A or T base. The codon usage bias is formed under the effects of mutation and selection.

6.
Indian J Biochem Biophys ; 2011 Dec; 48(6): 406-415
Article in English | IMSEAR | ID: sea-140208

ABSTRACT

One of the fascinating properties of the DNA sequences of prokaryotic and eukaryotic chromosomes is that they possess long-range order. Computational methods like spectral analysis, mutual information and DNA random walks have been used to probe long-range order via-long range correlations. This work attempts to show the advantage of using the Information Theoretic measure of mutual information for this purpose. A number Mu is found which indicates the existence of long-range order. Mu is the ratio between the value of mutual information function between two nucleotides of a DNA sequence separated by a large distance of 100 kilobases to the value expected from a randomized sequence of the same DNA. It is found that in spite of the constant shuffling of nucleotides due to insertion, deletion, inversion and recombination that occur during evolution, the chromosomal structure of prokaryotes is not always mosaic. While all archaeal chromosomes show mosaic structure and lack long-range order, a sizable fraction of the bacterial chromosomes do possess long-range order. A statistical multivariate analysis has been done to find which of the physical variables like genome size or GC% affects the organization of the chromosome or correlates with the long-range order. The existence of long-range order in bacterial chromosomes could be directly correlated to the degree of gene strand bias shown by it. Firmicutes which have low GC content also have pronounced strand bias and show long-range correlations. It is observed that the occurrence of long-range order in bacteria is independent of genome size, but depends on its GC content and gene strand bias.


Subject(s)
Chromosomes , Chromosomes, Archaeal , Chromosomes, Bacterial , Computational Biology/methods , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL